Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Vet Microbiol ; 291: 110032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430715

RESUMO

In recent years, it has become apparent that imbalances in the gastrointestinal system can impact organs beyond the intestine such as the lungs. Given the established ability of probiotics to modulate the immune system by interacting with gastrointestinal cells, our research aimed to investigate whether administering the probiotic strain Bacillus subtilis-597 could mitigate the outcome of influenza virus infection in pigs. Pigs were fed a diet either with or without the probiotic strain B. subtilis-597 for 14 days before being intranasally inoculated with a swine influenza A H1N2 strain (1 C.2 lineage). Throughout the study, we collected fecal samples, blood samples, and nasal swabs to examine viral shedding and immune gene expression. After seven days of infection, the pigs were euthanized, and lung and ileum tissues were collected for gene expression analysis and pathological examination. Our findings indicate that the administration of B. subtilis-597 exhibit potential in reducing lung lesions, possibly attributable to a general suppression of the immune system as indicated by reduced C-reactive protein (CRP) levels in serum, decreased expression of interferon-stimulated genes (ISGs), and localized reduction of the inflammatory marker serum amyloid A (SAA) in ileum tissue. Notably, the immune-modulatory effects of B. subtilis-597 appeared to be unrelated to the gastrointestinal microbiota, as the composition remained unaltered by both the influenza infection and the administration of B. subtilis-597.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Probióticos , Doenças dos Suínos , Suínos , Animais , Humanos , Bacillus subtilis , Probióticos/farmacologia , Infecções por Orthomyxoviridae/veterinária , Inflamação/veterinária , Pulmão/patologia
2.
Front Immunol ; 15: 1328401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481989

RESUMO

Background: Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods: moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results: Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion: Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.


Assuntos
Cistatinas , Monócitos , Humanos , Animais , Camundongos , Ascaris lumbricoides , Ácido Mevalônico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Inflamação/metabolismo , Imunidade , Células Dendríticas , RNA/metabolismo
3.
mBio ; 15(2): e0260323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38179939

RESUMO

Diet composition plays a large role in regulating gut health and enteric infection. In particular, synthetic "Western-style" diets may predispose to disease, while whole-grain diets containing high levels of crude fiber are thought to promote gut health. Here, we show that, in contrast to this paradigm, mice fed with unrefined chow are significantly more susceptible to infection with Trichuris muris, a caecum-dwelling nematode, than mice fed with refined, semi-synthetic diets (SSDs). Moreover, mice fed with SSD supplemented with inulin, a fermentable fiber, developed chronic T. muris burdens, whereas mice fed with SSD efficiently cleared the infection. Diet composition significantly impacted infection-induced changes in the host gut microbiome. Mice infected with the bacterium Citrobacter rodentium were also more susceptible to pathogen colonization when fed with either chow or inulin-enriched SSD. However, transcriptomic analysis of tissues from mice fed with either SSD or inulin-enriched SSD revealed that, in contrast to T. muris, increased C. rodentium infection appeared to be independent of the host immune response. Accordingly, exogenous treatment with interleukin (IL)-25 reduced T. muris burdens in inulin-fed mice, whereas IL-22 treatment was unable to restore resistance to C. rodentium colonization. Diet-mediated effects on pathogen burden were more pronounced for large intestine-dwelling pathogens, as effects on small the intestinal helminth (Heligmosomoides polygyrus) were less evident, and protozoan (Giardia muris) infection burdens were equivalent in mice fed with chow, inulin-enriched SSD, or SSD, despite higher cyst excretion in chow-fed mice. Collectively, our results point to a tissue- and pathogen-restricted effect of dietary fiber levels on enteric infection intensity.IMPORTANCEEnteric infections induce dysbiosis and inflammation and are a major public health burden. As the gut environment is strongly shaped by diet, the role of different dietary components in promoting resistance to infection is of interest. While diets rich in fiber or whole grain are normally associated with improved gut health, we show here that these components predispose the host to higher levels of pathogen infection. Thus, our results have significance for interpreting how different dietary interventions may impact on gastrointestinal infections. Moreover, our results may shed light on our understanding of how gut flora and mucosal immune function is influenced by the food that we eat.


Assuntos
Intestino Delgado , Inulina , Camundongos , Animais , Dieta/métodos , Inflamação , Mucosa , Fibras na Dieta
4.
Immunology ; 171(3): 402-412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38030377

RESUMO

Probiotics have been reported to have immunomodulatory properties in the context of infectious disease and inflammation, although the underlying mechanisms are not fully understood. Here, we aimed to determine how different probiotic bacterial strains modulated macrophage function during TLR3 stimulation mimicking viral infection. We screened 14 different strains for their ability to modulate TNF-α, IL-6 IL-10, IFN-α, IFN-ß and IFN-γ secretion in RAW 264.7 macrophages with or without poly(I:C) stimulation. Seven strains were selected for further analysis using primary porcine alveolar macrophages. In-depth transcriptomic analysis on alveolar macrophages was conducted for two strains. Most strains induced a synergistic effect when co-incubated with poly(I:C) resulting in increased levels of IL-6 and TNF-α secretion from RAW 264.7 cells. This synergistic effect was found to be TLR2 independent. Only strains of Bacillus spp. could induce this effect in alveolar macrophages. Transcriptomic analysis indicated that the increased TNF-α secretion in alveolar macrophages after co-incubation with poly(I:C) correlated with significant upregulation of TNF and IL23A-related pathways. Collectively, our data show that probiotic bacteria possess strain-dependent immunomodulatory properties that may be harnessed to enhance innate immune responses to pathogens.


Assuntos
Bacillus , Probióticos , Suínos , Animais , Receptor 3 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Bacillus/metabolismo , Interleucina-6 , Macrófagos , Citocinas
5.
Sci Rep ; 13(1): 21931, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081984

RESUMO

Brown seaweeds have a rich bioactive content known to modulate biological processes, including the mucosal immune response and microbiota function, and may therefore have the potential to control enteric pathogens. Here, we tested if dietary seaweed (Saccharina latissima) supplementation could modulate pig gut health with a specific focus on parasitic helminth burdens, gut microbiota composition, and host immune response during a five week feeding period in pigs co-infected with the helminths Ascaris suum and Oesophagostomum dentatum. We found that inclusion of fermented S. latissima (Fer-SL) at 8% of the diet increased gut microbiota α-diversity with higher relative abundances of Firmicutes, Tenericutes, Verrucomicrobia, Spirochaetes and Elusimicrobia, and lower abundance of Prevotella copri. In the absence of helminth infection, transcription of immune-related genes in the intestine was only moderately influenced by dietary seaweed. However, Fer-SL modulated the transcriptional response to infection in a site-specific manner in the gut, with an attenuation of infection-induced gene expression in the jejunum and an amplification of gene expression in the colon. Effects on systemic immune parameters (e.g. blood lymphocyte populations) were limited, indicating the effects of Fer-SL were mainly localized to the intestinal tissues. Despite previously documented in vitro anti-parasitic activity against pig helminths, Fer-SL inclusion did not significantly affect parasite egg excretion or worm establishment. Collectively, our results show that although Fer-SL inclusion did not reduce parasite burdens, it may modify the gut environment during enteric parasite infection, which encourages continued investigations into the use of seaweeds or related products as novel tools to improve gut health.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Dieta , Oesophagostomum , Suplementos Nutricionais , Imunidade
6.
Pathogens ; 12(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37375445

RESUMO

ABC transporters, a family of ATP-dependent transmembrane proteins, are responsible for the active transport of a wide range of molecules across cell membranes, including drugs, toxins, and nutrients. Nematodes possess a great diversity of ABC transporters; however, only P-glycoproteins have been well-characterized compared to other classes. The ABC transport proteins have been implicated in developing resistance to various classes of anthelmintic drugs in parasitic nematodes; their role in plant and human parasitic nematodes still needs further investigation. Therefore, ABC transport proteins offer a potential opportunity to develop nematode control strategies. Multidrug resistance inhibitors are becoming more attractive for controlling nematodes due to their potential to increase drug efficacy in two ways: (i) by limiting drug efflux from nematodes, thereby increasing the amount of drug that reaches its target site, and (ii) by reducing drug excretion by host animals, thereby enhancing drug bioavailability. This article reviews the role of ABC transporters in the survival of parasitic nematodes, including the genes involved, their regulation and physiological roles, as well as recent developments in their characterization. It also discusses the association of ABC transporters with anthelmintic resistance and the possibility of targeting them with next-generation inhibitors or nutraceuticals (e.g., polyphenols) to control parasitic infections.

7.
BMC Biol ; 21(1): 138, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316905

RESUMO

BACKGROUND: The influence of diet on immune function and resistance to enteric infection and disease is becoming ever more established. Highly processed, refined diets can lead to inflammation and gut microbiome dysbiosis, whilst health-promoting dietary components such as phytonutrients and fermentable fibres are thought to promote a healthy microbiome and balanced mucosal immunity. Chicory (Cichorium intybus) is a leafy green vegetable rich in fibres and bioactive compounds that may promote gut health. RESULTS: Unexpectedly, we here show that incorporation of chicory into semisynthetic AIN93G diets renders mice susceptible to infection with enteric helminths. Mice fed a high level of chicory leaves (10% dry matter) had a more diverse gut microbiota, but a diminished type-2 immune response to infection with the intestinal roundworm Heligmosomoides polygyrus. Furthermore, the chicory-supplemented diet significantly increased burdens of the caecum-dwelling whipworm Trichuris muris, concomitant with a highly skewed type-1 immune environment in caecal tissue. The chicory-supplemented diet was rich in non-starch polysaccharides, particularly uronic acids (the monomeric constituents of pectin). In accordance, mice fed pectin-supplemented AIN93G diets had higher T. muris burdens and reduced IgE production and expression of genes involved in type-2 immunity. Importantly, treatment of pectin-fed mice with exogenous IL-25 restored type-2 responses and was sufficient to allow T. muris expulsion. CONCLUSIONS: Collectively, our data suggest that increasing levels of fermentable, non-starch polysaccharides in refined diets compromises immunity to helminth infection in mice. This diet-infection interaction may inform new strategies for manipulating the gut environment to promote resistance to enteric parasites.


Assuntos
Dieta , Infecções por Nematoides , Animais , Camundongos , Polissacarídeos , Suplementos Nutricionais , Pectinas
8.
Pathogens ; 12(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37111422

RESUMO

Enteric helminth infection is an increasing concern in companion animals due to reports of resistance to commonly used anthelmintic drugs. Thus, the assessment of new therapeutic options such as bioactive dietary additives is of high importance. Here, we adapted egg hatch, larval migration, and larval motility assays to screen extracts of several natural ingredients against the canine hookworm Uncinaria stenocephala, a prevalent parasite of dogs in northern Europe. Egg hatch and larval migration assays were established showing that the anthelmintic drugs levamisole and albendazole had strong anti-parasitic activity against U. stenocephala, validating the use of these assays for the assessment of novel anti-parasitic substances. Subsequently, we identified that extracts from the seaweed Saccharina latissima, but not extracts from grape seed or chicory, significantly inhibited both hatching and larval migration. Finally, we showed that α-linolenic acid, a putative anti-parasitic compound from S. latissima, also exhibited anti-parasitic activity. Collectively, our results established a platform for the screening for anthelmintic resistance or novel drug candidates against U. stenocephala and highlighted the potential use of seaweed extracts as a functional food component to help control hookworm infection in dogs.

9.
J Infect Dis ; 227(12): 1428-1432, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36932044

RESUMO

Infection with intestinal whipworms (Trichuris spp.) causes widespread morbidity and may alter responses to enteric and extraintestinal coinfections. Here, we show that Trichuris muris infection in mice increases coinfection with 2 evolutionary divergent enteric pathogens, the bacterium Citrobacter rodentium and the helminth Heligmosomoides polygyrus. Coinfection caused reduced weight gain and promoted type 1-biased inflammation. In contrast, T. muris-infected mice were more resistant to migrating Ascaris suum larvae in the lungs. Our results highlight the divergent nature of pathogen interactions and suggest that whipworm infection is a risk factor for coinfections with other pathogens within the gastrointestinal tract.


Assuntos
Coinfecção , Tricuríase , Animais , Camundongos , Ascaris , Intestinos , Trichuris , Pulmão
10.
J Nutr Biochem ; 116: 109316, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36940885

RESUMO

Polyphenols are a class of bioactive plant compounds with health-promoting properties, however, the interactions between polyphenols and pathogen infection and their cumulative impact on inflammation and metabolic health are not well understood. Here, we investigated if a subclinical parasitic infection modulates the hepatic response to dietary polyphenol supplementation in a porcine model. Pigs were fed a diet with or without 1% grape proanthocyanidins (PAC) for 28 days. During the final 14 days of the experiment, half the pigs in each dietary group were inoculated with the parasitic nematode Ascaris suum. Serum biochemistry was measured and hepatic transcriptional responses were determined by RNA-sequencing coupled with gene-set enrichment analysis. A. suum infection resulted in reduced serum phosphate, potassium, sodium, and calcium, and increased serum iron concentrations. In uninfected pigs, PAC supplementation markedly changed the liver transcriptome including genes related to carbohydrate and lipid metabolism, insulin signaling, and bile acid synthesis. However, during A. suum infection, a separate set of genes were modulated by dietary PAC, indicating that the polyphenol-mediated effects were dependent on infection status. A. suum infection strongly influenced the expression of genes related to cellular metabolism, and, in contrast to the effects of PAC, these changes were mostly identical in both control-fed and PAC-fed pigs. Thus, the hepatic response to infection was mostly unaffected by concurrent polyphenol intake. We conclude that the presence of a commonly occurring parasite substantially influences the outcome of dietary polyphenol supplementation, which may have important relevance for nutritional interventions in populations where intestinal parasitism is widespread.


Assuntos
Ascaríase , Suínos , Animais , Ascaríase/parasitologia , Transcriptoma , Dieta/veterinária , Fígado , Polifenóis/farmacologia
11.
Exp Parasitol ; 248: 108493, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889503

RESUMO

Proanthocyanidins (PAs) are a class of plant specialized metabolites with well-documented bioactivities such as antiparasitic effects. However, little is known about how the modification of PAs influences their bioactivity. The objective of this study was to investigate a wide range of PA-containing plant samples to determine if extracts containing PAs modified by oxidation had altered antiparasitic activities, compared to the original extracts that had not been modified in alkaline conditions. We extracted and analyzed samples from 61 proanthocyanidin-rich plants. The extracts were then oxidized under alkaline conditions. We used these non-oxidized and oxidized proanthocyanidin-rich extracts to conduct a detailed analysis of direct antiparasitic effects against the intestinal parasite Ascaris suum in vitro. These tests showed that the proanthocyanidin-rich extracts had antiparasitic activity. Modification of these extracts significantly increased the antiparasitic activity for the majority the extracts, suggesting that the oxidation procedure enhanced the bioactivity of the samples. Some samples that showed no antiparasitic activity before oxidation showed very high activity after the oxidation. High levels of other polyphenols in the extracts, such as flavonoids, was found to be associated with increased antiparasitic activity following oxidation. Thus, our in vitro screening opens up the opportunity for future research to better understand the mechanism of action how alkaline treatment of PA-rich plant extracts increases their biological activity and potential as novel anthelmintics.


Assuntos
Proantocianidinas , Proantocianidinas/farmacologia , Antiparasitários/farmacologia , Flavonoides/farmacologia , Extratos Vegetais/farmacologia
12.
J Agric Food Chem ; 71(5): 2344-2355, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715127

RESUMO

Caffeic acid (CA) and chlorogenic acid (CGA) are commonly found phenolic acids in plant-derived foods and beverages. Their corresponding adducts with cysteine (Cys) have been detected in coffee-containing beverages. However, despite the well-documented antioxidant and anti-inflammatory activity of CA and CGA, the immunomodulatory activities of the Cys adducts (CA-Cys and CGA-Cys) are unknown. The adducts were therefore synthesized, and their immunomodulatory effects were studied in lipopolysaccharide (LPS)-treated RAW 264.7 cells and compared to the activity of the parent phenolic acids. CA and CGA generally down-regulated the inflammatory responses. However, RNA-sequencing showed that the LPS-induced pathways related to Toll-like receptor signaling, chemokine signaling, and NOD-like receptor signaling, and JAK-STAT/MAPK signaling pathways were upregulated in adduct-treated cells relative to parent phenolic acids, while neurodegenerative disorder-related pathways and metabolic pathways were downregulated. Production of prostaglandin E2 (PGE2), interleukin-6, tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS) was all inhibited by CA and CGA (P < 0.05). PGE2 and TNF-α were further suppressed in adduct-stimulated cells (P < 0.05), but ROS production was increased. For example, TNF-α produced by 100 µM CGA-stimulated cells and 100 µM CGA-Cys adduct-stimulated cells were 4.46 ± 0.23 and 1.61 ± 0.18 ng/mL, respectively. Thus, the addition of the Cys moiety drastically alters the anti-inflammatory activity of phenolic compounds.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Aminoácidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Macrófagos , Dinoprostona , Ácido Clorogênico/química
13.
Parasite Immunol ; 45(4): e12965, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36571323

RESUMO

Helminths are large multicellular parasites responsible for widespread chronic disease in humans and animals. Intestinal helminths live in close proximity with the host gut microbiota and mucosal immune network, resulting in reciprocal interactions that closely influence the course of infections. Diet composition may strongly regulate gut microbiota composition and intestinal immune function and therefore may play a key role in modulating anti-helminth immune responses. Characterizing the multitude of interactions that exist between different dietary components (e.g., dietary fibres), immune cells, and the microbiota, may shed new light on regulation of helminth-specific immunity. This review focuses on the current knowledge of how metabolism of dietary components shapes immune response during helminth infection, and how this information may be potentially harnessed to design new therapeutics to manage parasitic infections and associated diseases.


Assuntos
Helmintíase , Helmintos , Microbiota , Animais , Humanos , Intestinos , Dieta
14.
Animals (Basel) ; 12(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36428340

RESUMO

The aim of this study was to investigate differences in growth, hematology, metabolism, small intestine (SI) morphology, and enzyme activity of sow-reared piglets (SOW) compared to artificially reared piglets (MILK) given milk replacers in two different environments. Thirty-six piglets were selected at birth based on their birth weight; eighteen were kept on a commercial farm, another eighteen transferred to an animal research facility for artificial rearing. Differences were observed in enzymatic activity, with a larger amount of sucrase in the SOW compared with MILK group across the SI. SOW piglets also had a body composition with a larger amount of fat, muscle, and bone mass content. Differences in hematology were observed, suggesting environmental influences, biochemistry differences reflective of the diets given, and finally, an increased dry matter (DM) intake in SOW piglets was estimated. No differences were observed in immune function and only small differences in the gut integrity were found between the two groups. It can be concluded that body composition and enzyme activity can be manipulated through dietary intervention and that an increase in DM during lactation is beneficial for gut function. The study warrants further investigation into what this means for the subsequent weaning period.

16.
Antioxidants (Basel) ; 11(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36290756

RESUMO

The garlic-derived compounds propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) are metabolites with putative health benefits against intestinal inflammation that may be related to their antioxidant activity. However, the underlying mechanisms remain unclear, and whether PTS-PTSO can promote gut health by altering the microbiota and exert protection against enteric pathogens needs further investigation. Here, we explored the antioxidant activity of PTS-PTSO in murine macrophages in vitro, and in an in vivo model of bacterial infection with the bacterial pathogen Citrobacter rodentium. PTS-PTSO attenuated reactive oxygen species in lipopolysaccharide-stimulated macrophages in a nuclear factor erythroid factor 2-related factor 2 (Nrf2)-dependent manner, decreased nitric oxide levels both in macrophages in vitro and in the sera of mice fed PTS-PTSO, and had putatively beneficial effects on the commensal gut microbiota. Importantly, PTS-PTSO decreased faecal C. rodentium counts, concomitant with upregulation of Nrf2-related genes in colon tissue. Thus, PTS-PTSO mediates Nrf2-mediated antioxidant activity and modulates gut microbiota, which may protect the host against C. rodentium colonization. Our results provide further insight into how PTS-PTSO and related bioactive dietary compounds may reduce enteric infections.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36037562

RESUMO

Chagas disease, caused by the protozoa Trypanosoma cruzi, is a potentially life-threatening parasitic zoonosis infecting 6-7 million people worldwide, mainly in Latin America. Due to the limited numbers of drugs available against this neglected disease and their frequent adverse effects, novel anti-chagasic agents are urgently needed. Cichorium intybus L. (chicory) is a bioactive plant with potent activity against parasitic nematodes, but its effects on protozoans are poorly known and no studies have explored its trypanocidal potential. Here, we investigated the activity of C. intybus against extracellular and intracellular stages of T. cruzi, including the prediction of trypanocidal compounds by metabolomic analyses and bioactivity-based molecular networking. Purified C. intybus extracts were prepared from leaves and roots of five C. intybus cultivars (cv. 'Benulite', 'Goldine', 'Larigot', 'Maestoso' and 'Spadona'). All C. intybus extracts induced concentration-dependent effects against T. cruzi trypomastigotes. C. intybus leaf extracts had higher trypanocidal selectivity and lower cytotoxicity on mammalian cells than root extracts. The leaf extract of C. intybus cv. Goldine also significantly reduced the number of mammalian cells infected with T. cruzi amastigotes. Metabolomic and bioactivity-based molecular networking analyses revealed 11 compounds in C. intybus leaves strongly linked with activity against trypomastigotes, including the sesquiterpene lactone lactucin, and flavonoid- and fatty acid-derivatives. Furthermore, seven distinct C. intybus molecules (including two sesquiterpene lactone-derivatives) were predicted to be involved in reducing the number of mammalian cells infected with amastigotes. This is the first report of the anti-protozoal activity of C. intybus against trypanosomatid parasites and expands our understanding of the anti-parasitic effects of this plant and its bioactive metabolites. Further studies to elucidate the anti-protozoal compound(s) in C. intybus and their mode(s) of action will improve our knowledge of using this bioactive plant as a promising source of novel broad-spectrum anti-parasitic compounds with associated health benefits and biomedical potential.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Animais , Lactonas/farmacologia , Metabolômica , Doença de Chagas/tratamento farmacológico , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Mamíferos
18.
Cytokine ; 156: 155919, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649322

RESUMO

Regulation of macrophage (Mɸ) function can maintain tissue homeostasis and control inflammation. Parasitic worms (helminths) are potent modulators of host immune and inflammatory responses. They have evolved various strategies to promote immunosuppression, including redirecting phagocytic cells toward a regulatory phenotype. Although soluble products from the whipworm Trichuris suis (TSPs) have shown significant effects on Mɸ function, the mechanisms underlying these modulatory effects are still not well understood. In this study, we find that TSPs suppressed inflammatory cytokines (TNF and IL-6) in Mɸs stimulated with a broad panel of TLR agonists, whilst inducing IL-10. Moreover, M1 markers such as MHCII, CD86, iNOS, and TNF were downregulated in TSP-treated Mɸs, without polarizing them towards an M2-like phenotype. We showed that TSPs could establish a suppressed activation state of Mɸs lasting at least for 72 h, indicating an anti-inflammatory innate training. Moreover, we found that TSPs, via repression of intracellular TNF generation, decreased its secretion rather than interfering with the release of surface-bound TNF. Metabolic analysis showed that TSPs promote oxidative phosphorylation (OXPHOS) without affecting glycolytic rate. Collectively, these findings expand our knowledge on helminth-induced immune modulation and support future investigations into the anti-inflammatory properties of TSPs for therapeutic purposes.


Assuntos
Tricuríase , Trichuris , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/metabolismo , Macrófagos/metabolismo , Tricuríase/metabolismo , Tricuríase/parasitologia , Trichuris/metabolismo
19.
Animals (Basel) ; 12(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35454236

RESUMO

Weaning comprises a challenging period for pigs, but dietary tools can be implemented to avoid excess antibiotics usage. Therefore, we tested the effect of a 17.6% crude protein (CP) diet on growth and diarrhoea and investigated the effect of a 15.5% CP diet post-weaning on transcriptomic responses, growth, and diarrhoea-related antibiotic treatments. At weaning, pigs were divided into five dietary treatment groups in a three-phase diet from weaning to 30 kg bodyweight. The diets included a positive control group (PC) with medicinal zinc oxide, a negative control group (NC), a 17.6% CP diet based on soy protein concentrate (SP), a 17.6% CP diet based on soybean meal (SB), and a 15.5% CP diet with additional amino acids (XLA). Growth performance and the occurrence of diarrhoea were similar between the SP and SB groups. The XLA pigs had a reduced weight gain and fewer antibiotics treatments caused by diarrhoea, as well as a reduced level of blood proteins. Intestinal tissue samples from the XLA pigs displayed decreased expression of genes involved in nutrient metabolism and immune responses relative to the PC group. In conclusion, a very low CP diet reduces antibiotics treatments, but also adapts gut nutrient metabolism and reduces growth performance.

20.
FASEB J ; 36(4): e22256, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333423

RESUMO

Proanthocyanidins (PAC) are dietary polyphenols with putative anti-inflammatory and immunomodulatory effects. However, whether dietary PAC can regulate type-2 immune function and inflammation at mucosal surfaces remains unclear. Here, we investigated if diets supplemented with purified PAC modulated pulmonary and intestinal mucosal immune responses during infection with the helminth parasite Ascaris suum in pigs. A. suum infection induced a type-2 biased immune response in lung and intestinal tissues, characterized by pulmonary granulocytosis, increased Th2/Th1 T cell ratios in tracheal-bronchial lymph nodes, intestinal eosinophilia, and modulation of genes involved in mucosal barrier function and immunity. Whilst PAC had only minor effects on pulmonary immune responses, RNA-sequencing of intestinal tissues revealed that dietary PAC significantly enhanced transcriptional responses related to immune function and antioxidant responses in the gut of both naïve and A. suum-infected animals. A. suum infection and dietary PAC induced distinct changes in gut microbiota composition, primarily in the jejunum and colon, respectively. Notably, PAC consumption substantially increased the abundance of Limosilactobacillus reuteri. In vitro experiments with porcine macrophages and intestinal epithelial cells supported a role for both PAC polymers and PAC-derived microbial metabolites in regulating oxidative stress responses in host tissues. Thus, dietary PAC may have distinct beneficial effects on intestinal health during infection with mucosal pathogens, while having a limited activity to modulate naturally-induced type-2 pulmonary inflammation. Our results shed further light on the mechanisms underlying the health-promoting properties of PAC-rich foods, and may aid in the design of novel dietary supplements to regulate mucosal inflammatory responses in the gastrointestinal tract.


Assuntos
Ascaris suum , Proantocianidinas , Animais , Antioxidantes , Ascaris suum/fisiologia , Colo , Dieta , Inflamação , Pulmão , Proantocianidinas/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...